

Welcome to Mapry’s documentation!

Contents:

	Introduction

	Design Decisions

	Schema

	C++ Specifics

	Go Specifics

	Python Specifics

	Installation

	Command-Line Usage

	mapry Module

	Related Projects

	Future Work

	Contributing

	Versioning

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Mapry generates polyglot code for de/serializing object graphs from
JSONable structures.

Story. We needed a yet another domain-specific language for internal data
exchange and configuration of the system. The existing solutions mostly focused
on modeling the configuration as object trees in which the data is nested in
hierarchies with no cross-references between the objects.

For example, think of object trees as JSON objects or arrays. We found this
structure to be highly limiting for most of the complex messages and system
configurations. Our use cases required objects in the data to be referenced
among each other – instead of object trees we needed object graphs.

Moreover, we wanted the serialization itself to be readable so that an
operator can edit it using a simple text editor. JSONable structure offered
itself as a good fit there with a lot of existing assistance tools (JSON and
YAML modules etc.).

However, JSON allows only a limited set of data types (numbers, strings, arrays
and objects/maps). We found that most of our data relied on
a richer set of primitives than was provided by a standard JSON. This
extended set includes:

	date,

	datetime,

	time of day,

	time zone,

	duration and

	path.

While there exist polyglot serializers of object trees (e.g.,
Protocol Buffers [https://developers.google.com/protocol-buffers/]),
language-specific serializers of object graphs (e.g.,
Gob in Go [https://golang.org/pkg/encoding/gob/] or
Pickle in Python [https://docs.python.org/3/library/pickle.html]) or polyglot
ones with a limited set of primitives (e.g.,
Flatbuffers [https://google.github.io/flatbuffers/]), to the best of our
knowledge there is currently no serializer of object graphs that operates
with readable representations and provides a
rich set of primitive data types consistently across multiple languages.

Hence we developed Mapry, a generator of polyglot de/serialization code
for object graphs from JSONable structures.

The schema of the object graph is stored in a separate JSON file and defines
all the data types used in the object graph including the object graph itself.
The code is generated based on the schema. You define schema once and
generate code in all the supported languages automatically. Schemas can be
evolved and backward compatibility is supported through optional properties.

Supported languages

Currently, Mapry speaks:

	C++11,

	Go 1 and

	Python 3.

Since the serialization needs to operate in different languages, only the
intersection of language features is supported. For example, since Go does not
support inheritance or union types, they are not supported in Mapry either.

Workflow

The following diagram illustrates the workflow.

[image: _images/diagram.png]

Design Decisions

Maintainability. We wanted to facilitate maintainability of the system
through as many static and run time checks as possible so that most errors
in the object graphs are registered prior to the deployment in the production.
These checks include strong typing annotations at generation time and
various runtime checks at deserialization (dangling references, range checks,
minimum number of elements in arrays, pattern matching etc.).

Versatility. Since we need humans to operate on object graphs,
we needed the data representation of the object graph to be readable and
editable. Hence we strived to make the resulting JSONable structures succinct
yet comprehensible.

We intentionally did not fixate Mapry to directly handle files to allow for
a larger variety of supported formats and sources (JSON, YAML, BSON, MongoDB
etc.). Mapry operates on an in-memory representation of the JSONable data
(such as Python dictionaries or Go map[string]interface{}) which makes it
much more versatile than if it handled data sources directly.

Code readability over speed. We wanted the generated code to be rather
readable than fast. Though the seasoned developers might not care about the
implementation details, we found that newcomers really like to peek under the
hub. They get up to speed much faster when the generated code is readable.

In particular, when the generated code permeates most of your system components,
the readability becomes a paramount when you fix bottlenecks or debug.

Avoid dependency hell. We explicitly decided to make the generated code as
stand-alone as possible. This includes generating redundant data structures such
as parsing errors which could be theoretically used across different generated
modules.

While this redundancy seems wasteful (duplication) or impractical (specific
errors need to be checked instead of general ones), stand-alone code
allows us to dispense of a common Mapry library which greatly alleviates
the dependency hell in larger systems.

Take Protocol buffers [https://developers.google.com/protocol-buffers/]
as a contrasting example. The code generated by protocol buffers depends on a
common protobuf library. Imagine you depend on two different libraries,
each using a different version of protocol buffers. Since your system now has
conflicting dependencies, there is usually no easy way to use both libraries in
the system. If you are not the owner, you need to contact the maintainers of one
of the libraries and ask them for an upgrade.

Schema

The Mapry schema defines the properties and structures of the object graph in a
single JSON file. This file is parsed by Mapry to generate the
dedicated de/serialization code in the respective languages.

The schema is split in following sections:

	graph name and description,

	language-specific settings,

	definition of composite structures (classes and embeddable structures,
see below) and

	definition of graph properties.

Introductory Example

Before we dwell into the separate sections, let us present a brief example
of a schema to give you an overview:

{
 "name": "Pipeline",
 "description": "defines an address book.",
 "cpp": {
 "namespace": "book::address",
 "path_as": "boost::filesystem::path",
 "optional_as": "std::experimental::optional",
 "datetime_library": "ctime"
 },
 "go": {
 "package": "address"
 },
 "py": {
 "module_name": "book.address",
 "path_as": "pathlib.Path",
 "timezone_as": "pytz.timezone"
 },
 "classes": [
 {
 "name": "Person",
 "description": "defines a contactable person.",
 "properties": {
 "full_name": {
 "type": "string",
 "description": "gives the full name (including middle names)."
 },
 "address": {
 "type": "Address",
 "description": "notes where the person lives.",
 }
 }
 }
],
 "embeds": [
 {
 "name": "Address",
 "description": "defines an address.",
 "properties": {
 "text": {
 "type": "string",
 "description": "gives the full address."
 }
 }
 }
],
 "properties": {
 "maintainer": {
 "type": "Person",
 "description": "indicates the maintainer of the address book."
 }
 }
}

Language-specific Settings

Language-specific settings instruct Mapry how to deal with non-standard
structures during code generation. For example, you need to instruct which path
library to use in Python to represent file system paths (str or
pathlib.Path). Note that settings can be specified only for a subset of
languages. For example, you can omit C++ settings if you are going to generate
the code only in Go and Python.

The available settings are explained for each language in the
C++ Specifics, Go Specifics and Python Specifics, respectively.

Data Types

Mapry defines three families of data types: primitive data types (primitives),
aggregated data types (aggregated) and composite data types (composites).

Primitives are the basic data types such as booleans and integers.

Aggregated represent data structures which contain other data structures as
values. Mapry provides two aggregated data types: arrays and maps.

Composites represent data structures which contain properties. Each
property of a composite has a name and a corresponding data type. Three types of
composites are available in Mapry: classes, embeddable structures and an object
graph.

The following subsections describe the data types, instruct you how to define
them in the schema and how to impose constraints to further specify them.
For implementation details in different languages, please consult:
C++ Specifics, Go Specifics and Python Specifics.

For a summary of how Mapry represents the data types described below,
see JSON Representation.

Primitive Types

	boolean
	designates a value can be either true or false.

Booleans are represented in Mapry as JSON booleans.

	integer
	defines an integer number.

You can constrain integers by a minimum and maximum properties
(minimum and maximum, respectively). Following JSON schema,
Mapry assumes inclusive limits, unless you specify them otherwise
with boolean exclusive_minimum and exclusive_maximum
properties.

Integers are represented as JSON numbers.

Note that different languages can represent different (and mutually
possibly incompatible!) ranges of integers. See
Numbers in C++,
Numbers in Go and
Numbers in Python for more details.

	float
	specifies a floating-point number.

Analogous to integers, floating-point numbers can be further constrained
by minimum and maximum properties (minimum and maximum,
respectively). These limits are tacitly assumed inclusive. You can
specify exclusive limits by setting exclusive_minimum and/or
exclusive_maximum properties to true, respectively.

Floating-point numbers are represented as JSON numbers.

Note that different languages can represent different (and mutually
possibly incompatible!) ranges of floating-point numbers. See
Numbers in C++,
Numbers in Go and
Numbers in Python for more details.

	string
	denotes a string of characters.

You can enforce a string to follow a regular expression by defining
the pattern property.

Mapry represents strings as JSON strings.

	path
	represents a path in a file system.

Similar to strings, paths can also be restricted to comply to a
regular expression by specifying the pattern property.

Paths are represented as JSON strings in Mapry.

	date
	designates a day in time.

The time zone is not explicitly given, and needs to be assumed
implicitly by the user or specified separately as a related
time zone value (see below).

The dates are represented as JSON strings and expected in ISO 8601
format (e.g., "2016-07-03"). If your dates need to follow
a different format, you need to specify the format property.
Supported format directives are listed in Date/time Format.

	time
	ticks a time of day.

Mapry represents time of day as JSON strings and assumes them by default
in ISO 8601 format (e.g., "21:07:34"). However, you can change
the format by setting the format property. For a list of available
format directives, see Date/time Format.

	datetime
	fixes an instant (time of day + day in time).

Parallel to date, the datetime does not explicitly assume
a time zone. The user either presumes the zone by a convention
or specifies it as a separate time zone value (see below).

Just as date and time so is datetime represented as
JSON string in ISO 8601 format (e.g., "2016-07-03T21:07:34Z")
implicitly assuming
UTC time zone [https://en.wikipedia.org/wiki/Coordinated_Universal_Time].
If you want to have a datetime value in a different format, you have to set
the format property. See Date/time Format for a
list of format directives.

	time_zone
	pins a time zone.

Time zone values are useful as companion values to date and
datetimes.

Mapry represents time zones as JSON strings, identified by entries
in IANA time zone database [https://www.iana.org/time-zones].

For example, "Europe/Zurich"

	duration
	measures a duration between two instants.

Durations can be both positives and negatives. Following
C++ std::chrono library [https://en.cppreference.com/w/cpp/chrono/duration],
Mapry assumes a year as average year (365.2425 days) and a month as
average month (30.436875 days). If a duration should denote actual months
from a given starting date, you have to represent the duration as strings
and manually parse them by a third-party library (e.g.,
isodate in Python [https://pypi.org/project/isodate/]).

For example, "P6M2.1DT3H54M12.54S" (6 months, 2.1 days, 3 hours,
54 minutes and 12.54 seconds).

Note that different languages can represent different (and mutually
possibly incompatible!) granularities and ranges of durations. See
Durations in C++,
Durations in Go and
Durations in Python for more details.

Aggregated Types

	array
	lists an ordered sequence of values.

Mapry arrays are strongly typed and you need to specify
the type of the values as values property.

The minimum and maximum size of the array (inclusive) can be
further specified with the properties minimum_size and
maximum_size, respectively.

If you need to capture tuples, you can define an array of both
minimum and maximum size set to the same number.

Arrays are represented as JSON arrays.

	map
	projects strings to values (in other words, indexes values by strings).

Map values are strongly typed in Mapry and need to be defined
as values property.

Mapry represents maps as JSON objects.

Composite Types

Primitive and aggregated data types are the building blocks of a Mapry schema.
They are further structured into classes and embeddable structures.
Think of these structures as floors or building units. The whole building
is further represented as an object graph, the encompassing data type.
Composite data types are defined by their properties. All composite data
types must be given names.

Mapry represents instances of composite data types as JSON objects where
properties of the JSON object correspond to the properties defined for the
composite data type.

	Classes
	are referencable composite data types. Each instance of a class has a unique
identity which serves as a reference.

Classes are defined as a list of objects as classes property of the
schema. The order of the definitions is mimicked in the generated code
as much as possible.

Each class needs to define the name and description.
The plural form of the class instances can be specified as plural. If
no plural is specified, Mapry infers the plural form using a heuristic.
A class can define an id_pattern, a regular expression, which mandates
the pattern of the instance identifiers of the class.

The properties of the class are specified as properties property of the
class definition in the schema. See below how
properties are defined. If a class defines no properties then
properties can be omitted.

	Embeddable structures
	are nested within other composite data types.

Embeddable structures are given as a list of objects as embeds property
of the schema. The order of the definitions matters, and Mapry tries to
follow it when generating the code.

Each embeddable structure needs to specify its name and description.
Properties, if any, are given as properties property of the definition.
See below how properties are specified.

	Graph object
	is the encompassing data type corresponding to the schema.

The graph object needs to have a name and a description.

The properties of graph object itself, if available, are defined as
properties property of the schema.

The classes and embeddable structures are defined as classes and
embeds properties of the schema, respectively.

	Properties
	are the essence of composite data types. The properties of a composite
type (be it class, embeddable structure or graph object) map property names
to property definitions given as JSON objects in the schema.

A property type can be either a primitive data type, an aggregated data
type, a reference to a class or a nested embeddable structure. The type
of the property is given as type property of the property definition.
The type corresponds either to the name of the primitive, aggregated
or composite type.

Each property must have a description written as a JSON string in the
property definition.

Properties are assumed mandatory by default. You can specify that a property
is optional by setting the optional to true in the property definition.
Mapry will raise an error when parsing a JSONable object representing the
composite which lacks a mandatory property. On the other side, optional
properties can be simply omitted in the JSONable. If you need to evolve
a schema over time, optional properties provide you a practical approach to
handle different versions of a composite.

Mapry uses a heuristic to determine the property name in the JSONable object
representing the composite (see JSON Representation).
In most cases, you can leave Mapry decide the property names for you.
However, you can specify a different property name of the respective
JSONable by setting json property in the property definition if for some
reason you need to evolve the name or need to follow an external convention
incompatible with the heuristic.

The additional constraints of primitive and aggregated types (such as
minimum value of an integer or minimum size of an array) are given as
additional properties in the property definition.

JSON Representation

Mapry represents an instance of an object graph as a JSON object. Properties
of the object graph are directly represented as properties of that JSON object.
While this works for unreferencable data types (primitive and aggregated
data types and embeddable structures), instances of the classes need a special
treatment.

Namely, instances of the classes are represented in an instance registry as
JSON objects. Each property of the instance registry corresponds to an instance
of the class: the identifier is the property name (i.e. a key), while the
instance is the property value given as a nested JSON object (i.e. a value,
with properties of that nested JSON object corresponding to the properties of
the class).

Each instance registry is given as an additional property of the object graph.
The name of the instance registries corresponds to the lowercase plural
property of the class (if no plural is given, then the name of the instance
registry is inferred by a heuristic).

References to an instance of a class in an object graph are given as JSON
strings.

The following table summarizes how individual types are represented in
JSONables.

	Mapry Type

	JSON Type

	JSON Example

	boolean

	boolean

	true

	integer

	number

	2016

	float

	number

	198.4

	string

	string

	"some text"

	path

	string

	"/a/path/to/somewhere"

	date

	string

	"2016-07-03"

	time

	string

	"21:07:34"

	datetime

	string

	"2016-07-03T21:07:34Z"

	time_zone

	string

	"Europe/Zurich"

	duration

	string

	"P2DT3H54M12.54S"

	array

	array

	[1, 2, 3]

	map

	object

	{"someKey": 1, "anotherKey": 3}

	embeddable structure

	object

	{
 "someProperty": 23,
 "anotherProperty": "some text"
}

	instance of a class

	object

	{
 "someProperty": 23,
 "anotherProperty": "some text"
}

	reference to an instance of a class

	string

	"some-id"

	object graph

	object

	{
 "persons": {
 "Alice": {
 "birthday": "2016-07-03",
 "bff": "Bob"
 },
 "Bob": {
 "birthday": "2015-03-21"
 },
 "Chris": {
 "birthday": "2016-11-15",
 "bff": "Bob"
 }
 },
 "maintainer": "Bob"
}

Date/time Format

Representation of date/times in Mapry matches ISO 8601 by default
("2016-07-03", "21:07:34" and "2016-07-03T21:07:34Z"). This works
perfectly fine for cases where you control the data and can assume that the
reference time zone is
UTC [https://en.wikipedia.org/wiki/Coordinated_Universal_Time].
Yet when you do not control the data, e.g, when it comes from external
sources, you need to adapt the expected date/time format.

Mapry allows you to specify the format of a date/time through format
constraint consisting of widely-used strptime/strftime directives (e.g., see
strftime and strptime behavior in Python [https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior]
and
ctime strftime in C++ [http://www.cplusplus.com/reference/ctime/strftime/]).
Since code needs to be generated in multiple languages and not all languages
support all the directives, only a subset of the directives are available:

	Diractive

	Description

	%a

	The abbreviated weekday name (“Sun”)

	%A

	The full weekday name (“Sunday”)

	%b

	The abbreviated month name (“Jan”)

	%B

	The full month name (“January”)

	%d

	Day of the month (01..31)

	%e

	Day of the month with a leading blank instead of zero (1..31)

	%m

	Month of the year (01..12)

	%y

	Year without a century (00..99)

	%Y

	Year with century

	%H

	Hour of the day, 24-hour clock (00..23)

	%I

	Hour of the day, 12-hour clock (01..12)

	%l

	Hour of the day, 12-hour clock without a leading zero (1..12)

	%M

	Minute of the hour (00..59)

	%P

	Meridian indicator (“am” or “pm”)

	%p

	Meridian indicator (“AM” or “PM”)

	%S

	Second of the minute (00..60)

	%z

	Time zone hour and minute offset from UTC

	%Z

	Time zone name

	%%

	Literal % character

For example, you can match month/day/year format with %m/%d/%Y or
day.month.year. hours:minutes:seconds with %d. %m. %Y %H:%M:%S.

Mapry-generated code will use the standard date/time libraries (unless
otherwise specified in the language-specific settings). This means that the
implementation of the library determines how the directives are interpreted,
which could be sometimes ambiguous or not straight-forward to understand. For
example, time zone information (%z and %Z directives) might be handled
differently by different implementations.

Additionally, due to lack of escaping in Go standard package time, certain
formats can not be handled. See
Go Date/time Format Directives
for details.

Conventions

Since Mapry needs to generate code in different languages, parts of the schema
such as property names and class descriptions need to follow certain conventions
to comply with the readability and style rules of the corresponding languages.

Names of the object graph, classes and embeddable structures are expected
as Sanke_case. Abbreviations are expected as upper-case, e.g.,
Some_IDs or Some_URLs.

Property names are generally expected in snake_case with first word
lower-cased. Abbreviations are expected in upper-case even at the beginning
of a property name:
some_IDs, some_URLs, IDs_to_store, URLs_to_fetch.

Descriptions should all end with a dot and start with a lower-case. The
descriptions should start with a lower-case verb in present tense, e.g.,
indicates the maintainer of the address book.

Further Examples

The brief example presented in Introductory Example gives
you only an overview and lacks a comprehensive collection of use cases. To
further demonstrate how to define the object graphs and how they are represented
as JSONables in many different scenarios, we provide
the following table with links to examples.

	Description

	Schema

	Example representation

	boolean

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/boolean/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/boolean/example_ok.json]

	integer

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/integer/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/float/example_ok.json]

	float

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/float/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/float/example_ok.json]

	string

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/string/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/string/example_ok.json]

	path

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/path/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/path/example_ok.json]

	date

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/date/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/date/example_ok.json]

	time

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/time/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/time/example_ok.json]

	datetime

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/datetime/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/datetime/example_ok.json]

	time_zone

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/time_zone/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/time_zone/example_ok.json]

	duration

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/duration/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/duration/example_ok.json]

	array

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/array/of/boolean/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/array/of/boolean/example_ok.json]

	map

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/map/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/map/example_ok.json]

	embeddable structure

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/embed/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/embed/example_ok.json]

	class instances

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/class/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/class/example_ok.json]

	optional property

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/optional_in_graph/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/optional_in_graph/example_ok.json]

	differing JSON property

	schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/json_property/schema.json]

	JSON file [https://github.com/Parquery/mapry/blob/master/test_cases/general/json_property/example_ok.json]

For yet more examples, please see
the remainder of the test cases [https://github.com/Parquery/mapry/blob/master/test_cases].
Each test case consists of a schema (schema.json),
generated code ({language}/test_generate subdirectory) and
example JSON representations (example_ok.json, example_ok_*.json and
example_fail_*.json).

C++ Specifics

Mapry produces a C++ runtime implementation with a simple interface for
de/serializing object graphs from
Jsoncpp [https://github.com/open-source-parsers/jsoncpp] values.

Settings

You need to specify the C++ specific settings in a schema to instruct Mapry
how to generate the code. The following points needs to be defined:

	namespace
	indicates the namespace of the generated code.

For example, book::address.

	path_as
	defines the type of the paths in the generated code.

Mapry supports: std::filesystem::path and boost::filesystem::path.

	optional_as
	defines the type of the optional properties in the generated code.

Mapry supports: boost::optional, std::optional and
std::experimental::optional.

	datetime_library
	defines the library to use for date, datetime, time and time zone
manipulation.

Mapry supports: ctime and date.h (i.e.
Howard Hinnant’s date library [https://howardhinnant.github.io/date/date.html])

	idention
	defines the indention of the generated code. Defaults to two spaces and
can be omitted.

For example, " " (four spaces)

Generated Code

Mapry produces all the files in a single directory. The generated code lives
in the namespace indicated by C++ setting namespace in the schema.

Mapry generates the following files (in order of abstraction):

	types.h defines all the graph structures (embeddable structures,
classes, object graph itself etc.).

	parse.h and parse.cpp define the structures used for parsing and
implement their handling (such as parsing errors).

	jsoncpp.h and jsoncpp.cpp define and implement the de/serialization
of the object graph from/to a
Jsoncpp [https://github.com/open-source-parsers/jsoncpp] value.

The example of the generated code for the schema given in
Introductory Example is available
in the repository [https://github.com/Parquery/mapry/blob/master/test_cases/docs/schema/introductory_example/cpp/test_generate].

Deserialization

The following snippet shows you how to deserialize the object graph from a
Jsoncpp value. We assume the schema as provided in
Introductory Example.

Json::Value value;
// ... parse the value from a source, e.g., a file

book::address::parse::Errors errors(1024);
book::address::Pipeline pipeline;

const std::string reference_path(
 "/path/to/the/file.json#");

book::address::jsoncpp::pipeline_from(
 value,
 reference_path,
 &pipeline,
 &errors);

if (not errors.empty()) {
 for (const auto& err : errors.get()) {
 std::cerr << err.ref << ": " << err.message << std::endl;
 }
 return 1;
}

You can seamlessly access the properties and iterate over aggregated types:

std::cout << "Maintainers are:" << std::endl;
for (const book::address::Person& maintainer : pipeline.maintainers) {
 std::cout
 << maintainer.full_name
 << " (address: " << maintainer.address.text << ")"
 << std::endl;
}

Serialization

You serialize the graph to a Jsoncpp value (assuming you predefined the variable
pipeline) simply with:

const Json::Value value(
 book::address::jsoncpp::serialize_pipeline(
 pipeline));

Compilation

The generated code is not header-only. Since there is no standard C++ build
system and supporting the whole variety of build systems would have been overly
complex, we decided to simply let the user integrate the generated files into
their build system manually. For example, Mapry will not generate any CMake
files.

Here is an exerpt from a CMakeLists.txt (corresponding to the schema given
in Introductory Example) that uses
conan [https://conan.io/] for managing dependencies:

add_executable(some_executable
 some_executable.cpp
 book/address/types.h
 book/address/parse.h
 book/address/parse.cpp
 book/address/jsoncpp.h
 book/address/jsoncpp.cpp)

target_link_libraries(some_executable
 CONAN_PKG::jsoncpp
 CONAN_PKG::boost)

Implementation Details

Representation

Mapry represents the types defined in the schema as closely as possible
in C++. The following tables list how different types are represented in
generated C++ code.

Primitive types

	Mapry type

	C++ type

	Boolean

	bool

	Integer

	int64_t

	Float

	double

	String

	std::string

	Path

	std::filesystem::path or boost::filesystem::path

(depending on path_as setting)

	Date

	struct tm or date::local_days

(depending on datetime_library setting)

	Time

	struct tm or date::time_of_day<std::chrono::seconds>

(depending on datetime_library setting)

	Datetime

	struct tm or date::local_seconds

(depending on datetime_library setting)

	Time zone

	std::string or const date::time_zone*

(depending on datetime_library setting)

	Duration

	std::chrono::nanoseconds

Aggregated types (of a generic type T)

	Mapry type

	C++ type

	Array

	std::vector<T>

	Map

	std::map<std::string, T>

Composite Types

	Mapry type

	C++ type

	Reference to an instance of class T

	T*

	Embeddable structure T

	struct T

	Optional property of type T

	boost::optional<T>,

std::optional<T> or

std::experimental::optional<T>

(depending on optional_as setting)

Graph-specific structures

	Mapry type

	C++ type

	Registry of instances of class T

	std::map<std::string, T>

Numbers

Mapry depends on the underlying JSON library for the representation of numbers.
How the library deals with numbers has implications on the ranges and precision
of the numbers that you can represent and can lead to unexpected overflows.

While JSON standard [https://www.json.org/] does not distinguishes between
integers and floats and treat all numbers equally,
Jsoncpp [https://github.com/open-source-parsers/jsoncpp] indeed distinguishes
between the integers (represented internally as 64-bit integers) and floats
(represented internally as double-precision floats).

Based on the internal representation, C++ deserialization can represent integers
in the range of 64-bit integers (-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807) and floats in the rage of double-precision (
-1.7976931348623157e+308 to 1.7976931348623157e+308).

However, note that deserialization in other languages might impose stricter
constraints. For example, Go does not distinguish between integers and floats
when parsing JSON (see Numbers in Go), so the
overall range that you can represent is smaller if you need Go and C++
de/serialization to inter-operate.

Time Libraries

Mapry generates the code that uses either the standard
ctime [http://www.cplusplus.com/reference/ctime/] library
or
Howard Hinnant’s date library (date.h) [https://howardhinnant.github.io/date/date.html]
to manipulate the dates, datetimes, times of the day and time zones based on
datetime_library in C++ settings section of the schema.

Since ctime does not support a time zone registry, the time zones are parsed
as strings and are not further validated. For example, you can specify an
incorrect time zone such as Neverland/Magic and the deserialization code
will not complain.

On the other hand, since Howard Hinnant’s date library (date.h) supports a
registry of IANA time zones, the time zones are in fact checked at
deserialization and an error will be raised if the time zone is invalid.

We would recommend you to use Howard Hinnant’s date library (date.h) instead of
the standard ctime though it comes with an extra effort of installing the
dependenciy. In our opinion, the sophistication, the easy and the clarity Howard
Hinnant’s library enforces on date/time manipulations pay off in long term.

The following table gives you a comparison of the generated codes:

	Date
	ctime:
schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/date/schema.json]
and
code [https://github.com/Parquery/mapry/tree/master/test_cases/general/primitive_type/date/cpp/test_generate]

date.h:
schema [https://github.com/Parquery/mapry/blob/master/test_cases/cpp/datetime_library_date/date/schema.json]
and
code [https://github.com/Parquery/mapry/tree/master/test_cases/cpp/datetime_library_date/date/cpp/test_generate]

	Datetime
	ctime:
schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/datetime/schema.json]
and
code [https://github.com/Parquery/mapry/tree/master/test_cases/general/primitive_type/datetime/cpp/test_generate]

date.h:
schema [https://github.com/Parquery/mapry/blob/master/test_cases/cpp/datetime_library_date/datetime/schema.json]
and
code [https://github.com/Parquery/mapry/tree/master/test_cases/cpp/datetime_library_date/datetime/cpp/test_generate]

	Time of day
	ctime:
schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/time/schema.json]
and
code [https://github.com/Parquery/mapry/tree/master/test_cases/general/primitive_type/time/cpp/test_generate]

date.h:
schema [https://github.com/Parquery/mapry/blob/master/test_cases/cpp/datetime_library_date/time/schema.json]
and
code [https://github.com/Parquery/mapry/tree/master/test_cases/cpp/datetime_library_date/time/cpp/test_generate]

	Time zone
	ctime:
schema [https://github.com/Parquery/mapry/blob/master/test_cases/general/primitive_type/time_zone/schema.json]
and
code [https://github.com/Parquery/mapry/tree/master/test_cases/general/primitive_type/time_zone/cpp/test_generate]

date.h:
schema [https://github.com/Parquery/mapry/blob/master/test_cases/cpp/datetime_library_date/time_zone/schema.json]
and
code [https://github.com/Parquery/mapry/tree/master/test_cases/cpp/datetime_library_date/time_zone/cpp/test_generate]

Durations

Mapry uses standard
std::chrono::nanoseconds [http://www.cplusplus.com/reference/chrono/nanoseconds/]
to represent durations. According to the standard, this implies that beneath the
hub a signed integral type of at least 64 bits is used to represent the count.

Since integral numbers of finite size are used for representation, the generated
code can only deal with a finite range of durations. In contrast, Mapry
durations are given as strings and thus can represent a much larger range of
durations (basically bounded only on available memory space).

In fact, the problem is very practical and you have to account for it when
you deal with long or fine-grained durations. For example, a duration specified
as P300Y already leads to an overflow since 300 years can not be
represented as nanoseconds with finite integral numbers of 64 bits.
Analogously, PT0.0000000001 can not be represent either since the
precision of the duration goes beyond nanoseconds.

Note also that other languages impose stricter constraints. For example, Python
uses microseconds to represent durations (see
Durations in Python) and
hence you need to restrict your durations to microsecond granularity if both
Python and C++ de/serializations are needed.

Go Specifics

Mapry generates a Go package with structures and several public functions for
de/serialization from/to JSONable objects given as interface{}.

Settings

In order to generate the Go code, you need to specify the Go specific setting in
the schema:

	package
	indicates the package name of the generated code.

Generated Code

All the files are generated in a single directory. The code lives in the
package indicated by the Go setting package of the schema.

Mapry writes the following files (in order of abstraction):

	types.go defines all the structures of the object graph (embeddable
structures, classes, object graph itself etc.)

	parse.go defines general parsing structures and their handling (such as
parsing errors).

	fromjsonable.go provides functions for parsing the object graph from a
JSONable interface{} value.

	tojsonable.go gives you functions for serializing the object graph to a
JSONable interface{} value.

The example of the generated code for the schema given in
Introductory Example is available
in the repository [https://github.com/Parquery/mapry/blob/master/test_cases/docs/schema/introductory_example/go/test_generate].

Deserialization

Assuming the schema provided in Introductory Example, you
deserialize the object graph from a JSONable interface{} as follows.

var value interface{}
// ... parse the value from a source, e.g., a file

pipeline := &address.Pipeline{}
errors := address.NewErrors(0)

const referencePath = "/path/to/the/file.json#"

address.PipelineFromJSONable(
 value,
 referencePath,
 pipeline,
 errors)

if !errors.Empty() {
 ee := errors.Values()
 for i := 0; i < len(ee); i++ {
 fmt.Fprintf(
 os.Stderr, "%s: %s\n",
 ee[i].Ref, ee[i].Message)
 }
 return 1
}

The access to the deserialized object graph pipeline is straight-forward:

fmt.Println("Maintainers are:")
for _, m := range pipeline.maintainers {
 fmt.Printf(
 "%s (address: %s)\n",
 m.full_name, m.address.text)
}

Serialization

Assuming the deserialized pipeline, you serialize it back into a JSONable
map[string]interface{}:

var err error
var jsonable map[string]interface{}
jsonable, err = address.PipelineToJSONable(pipeline)

Implementation Details

Representation

Go representation of Mapry types tries to be as straight-forward as possible.
The following tables show how Mapry types are mapped to Go types in generated
Go code.

Primitive types

	Mapry type

	Go type

	Boolean

	bool

	Integer

	int64

	Float

	float64

	String

	string

	Path

	string

	Date

	time.Time

	Time

	time.Time

	Datetime

	time.Time

	Time zone

	*time.Location

	Duration

	time.Duration

Aggregated types (of a generic type T)

	Mapry type

	Go type

	Array

	[]T

	Map

	map[string]T

Composite types

	Mapry type

	Go type

	Reference to an instance of class T

	*T

	Embeddable structure T

	struct T

	Optional property of type T

	*T

Graph-specific structures

	Mapry type

	Go type

	Registry of instances of class T

	map[string]*T

Numbers

The standard encoding/json [https://golang.org/pkg/encoding/json/] package
uses double-precision floating-point numbers (float64) to represent both
floating-point and integral numbers. Mapry-generated Go code follows this
approach and assumes that all numbers are represented as float64. This
assumption has various implications on what numbers can be represented.

The set of representable floating-point numbers equals thus that of
float64, namely -1.7976931348623157e+308 to 1.7976931348623157e+308 with the
smallest above zero being 2.2250738585072014e-308. Hence Mapry also represents
floating points as float64.

Unlike floating-point numbers, which are simply mirroring internal and JSONable
representation, Mapry represents integers as int64 which conflicts with
JSONable representation of numbers as float64. Namely, according to
IEEE 754 standard [https://ieeexplore.ieee.org/document/4610935], float64
use 53 bits to represent digits and 11 bits for the exponent. This means that
you can represent all the integers in the range [-2^53, 2^53] (2^53 ==
9,007,199,254,740,992) without a loss of precision. However, as you cross 2^53,
you lose precision and the set of representable integers becomes sparse. For
example, 2^53 + 7 is 9,007,199,254,740,999 while it will be represented as
9,007,199,254,741,000.0 (2^53 + 8) in float64. Hence, you can precisely
represent 2^53 + 8, but not 2^53 + 7, in your JSONable.

Unfortunately, most JSON-decoding packages (e.g.,
encoding/json [https://golang.org/pkg/encoding/json/]) will silently ignore
this loss of precision. For example, assume you supply a string encoding a JSON
object containing an integer property set to 2^53 + 7. You pass this string
through encoding/json to obtain a JSONable and then pass it on to Mapry for
further parsing. Since Mapry does not directly operate on the string, but on an
intermediate JSONable representation (which represents numbers as float64),
your Mapry structure ends up with integer representations that diverges from the
original string.

Note that this is a practical problem and not merely a theoretical one. For
example, unique identifiers are often encoded as 64-bit integers. If they are
generated randomly (or use 64-bits to encode extra information etc.) you
should represent them in JSON as strings and not numbers. Otherwise, you will
get an invalid unique identifier once you decode the JSON.

Furthermore, Mapry representation of integers with 64-bits restricts the range
of representable integers to [-2^64, 2^64 - 1] (-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807). In contrast, JSONable representation uses
float64 and hence can represent the above-mentioned wider range of
float64 (-1.8e+308 to 1.8e+308). Due to this difference in representations,
Mapry-generated code will raise an error if a number needs to be parsed into an
integer that is out of 64-bit range.

Date/time Format Directives

Go standard package time diverges from many other languages (including
C++ and Python) in that it does not support strftime/strptime directives, but
a special (american-centered) date/time format of its own (see
time.Format [https://golang.org/pkg/time/#Time.Format]). Such format causes
a couple of repercussions:

	First, fractions of seconds are not supported (akin to
C/C++ ctime library).

	Second, certain parts of the format, while unproblematic in strftime
directives, cause conflicts in Go. For example, the format
"Sun goes up: %Y-%m-%d %H:%M:%S" will be misinterpreted since Sun
will be understood as abbreviated weekday in Go. Mapry detects such conflicts
as soon as you try to generate Go code and raise an error. However, we leave
it to the user to decide to generate code in other languages even though
Go code can not be generated.

Unfortunately, escape codes are not supported in time package and this
problem can not be resolved.

Durations

Go represents durations as time.Duration which in fact counts the
nanoseconds as int64 (see
time.Duration [https://golang.org/pkg/time/#Duration]).

Mapry will parse the duration strings into time.Duration. Similar to
problems in C++ generated code (see
Durations in C++),
time.Duration can not capture all the strings representable by ISO 8601
period strings. Number of nanoseconds are limited by the range of int64 and
can not span periods as short as 300 years (PY300). Furthermore, periods
at finer granularity than nanoseconds are impossible to parse either (e.g.,
PT0.00000000004). If you need to specify such durations, you need to specify
the value as string and parse them manually.

Mind that durations in other language might introduce additional constraints.
For example, Python represents durations as microseconds (see
Durations in Python).

Python Specifics

Mapry generates a Python module which defines structures
and several de/serialization functions translating from/to JSONable Any
values.

Settings

Mapry needs you to specify the following Python-specific settings in the schema:

	module_name
	specifies the fully qualified base module name of the generated code.

For example, book.address.

	path_as
	defines the type of the paths in the generated code.

Mapry supports: str and pathlib.Path.

	timezone_as
	defines the type of the time zones in the generated code.

Mapry supports: str and pytz.timezone.

	indention
	defines the indention of the generated code. Defaults to four spaces and
can be omitted.

For example, " " (two spaces)

Generated Code

All the files live in a single directory. The module intra-dependencies are
referenced using the fully qualified base module name given as module_name
in the schema.

Here is the overview of the generated files (in order of abstraction).

	__init__.py defines the general structures of the object graph (embeddable
structures, classes, object graph itself etc.).

	parse.py defines general parsing structures such as parsing errors.

	fromjsonable.py defines parsing of the object graph from a JSONable
dictionary.

	tojsonable.py defines serialization of the object graph to a JSONable
dictionary.

The example of the generated code for the schema given in
Introductory Example is available
in the repository [https://github.com/Parquery/mapry/blob/master/test_cases/docs/schema/introductory_example/py/test_generate].

Deserialization

Given the schema provided in Introductory Example and assuming you obtained
the JSONable value using, e.g., json module from the
standard library, you deserialize it to an object graph as follows.

Obtain a JSONable
pth = '/path/to/the/file.json'
with open(pth, 'rt') as fid:
 value = json.load(fid)

Parse the JSONable
errors = book.address.parse.Errors(cap=10)

pipeline = book.address.fromjsonable.pipeline_from(
 value=value,
 ref=pth + '#',
 errors=errors)

if not errors.empty():
 for error in errors.values():
 print("{}: {}".format(error.ref, error.message), file=sys.stderr)

 return 1

You can now access the object graph pipeline:

print('Maintainers are:')
for maintainer in pipeline.maintainers:
 print('{} (address: {})'.format(
 maintainer.full_name,
 maintainer.address.text))

Serialization

You serialize back the object graph pipeline into a JSONable by:

jsonable = book.address.tojsonable.serialize_pipeline(
 pipeline,
 ordered=True)

The jsonable can be further serialized to a string by json.dumps(.)
from the standard library:

text = json.dumps(jsonable)

Implementation Details

Representation

Mapry directly maps its types to corresponding Python types. The mapping is
presented in The following tables.

Primitive types

	Mapry type

	Python type

	Boolean

	bool

	Integer

	int

	Float

	float

	String

	str

	Path

	str or pathlib.Path

(depending on path_as setting)

	Date

	datetime.date

	Time

	datetime.time

	Datetime

	datetime.datetime

	Time zone

	str or datetime.tzinfo

(depending on timezone_as setting)

	Duration

	datetime.timedelta

Aggregated types (of a generic type T)

	Mapry type

	Python type

	Array

	typing.List[T]

	Map

	typing.MutableMapping[str, T]

Composite types

	Mapry type

	Python type

	Reference to an instance of class T

	T

	Optional property of type T

	typing.Optional[T]

Graph-specific structures

	Mapry type

	Python type

	Registry of instances of class T

	typing.MutableMapping[str, T]

Unordered and Ordered Mappings

When parsing a JSONable, Mapry inspects the types of the mappings to decide
whether to keep or ignore the order of the keys. Namely, if the mapping
is an instance of collections.OrderedDict, the corresponding Mapry
representation will also be collections.OrderedDict. Analogously for an
unordered mapping, if the JSONable mapping is given as dict, Mapry will also
represent it as dict. This distinction is applied both to Mapry maps as well
as registries of class instances.

When you serialize a Mapry structure to a JSONable, it is up to you to decide
whether you want the mappings ordered or not. This is specified with the
ordered argument. For example, consider a function generated to serialize
the graph from Introductory Example:

def serialize_pipeline(
 instance: book.address.Pipeline,
 ordered: bool = False
) -> typing.MutableMapping[str, typing.Any]:
 """
 serializes an instance of Pipeline to a JSONable.

 :param instance: the instance of Pipeline to be serialized
 :param ordered:
 If set, represents the instance properties and class registries
 as a ``collections.OrderedDict``.
 Otherwise, they are represented as a ``dict``.
 :return: JSONable representation
 """
 if ordered:
 target = (
 collections.OrderedDict()
) # type: typing.MutableMapping[str, typing.Any]
 else:
 target = dict()

 ...

 return target

Numbers

Python 3 represents integer numbers as an unbounded int (see
stdtypes [https://docs.python.org/3/library/stdtypes.html#typesnumeric]),
unlike C++ or Go (e.g., see Numbers in C++ or
Numbers in Go, respectively) which represents
numbers with bounded 64-bits integers. Since Mapry also relies on int to
represent integers, this means that you can use unbounded integer representation
in generated Python code as long as this code does not need to work with other
languages.

This is particularly important when you serialize Mapry structures into
JSONables. As soon as you need interoperability with, say, C++ or Go, the
resulting JSONable will fail to parse. This is a limitation that Mapry does not
check for at the moment. We leave it to the user of the generated code to decide
how it will be used and what extra checks need to be performed since the
JSONable is valid from the point-of-view of the Python 3 code.

In contrast to integers, Python 3 represents floating-point numbers (float)
with a bounded 64-bit double-precision numbers (according to
IEEE 754 [https://ieeexplore.ieee.org/document/4610935]). This
representation is also used by Mapry. This limits the range of representable
numbers from -1.7976931348623157e+308 to 1.7976931348623157e+308. Note also that
the closer you get to the range bounds, the sparser the representable numbers
due to how floating-point numbers are represented by IEEE 754.

Durations

Durations are given in Python 3 as datetime.timedelta, a structured
normalized representation of days, seconds and microseconds (see
datetime.timedelta [https://docs.python.org/3/library/datetime.html#timedelta-objects])
between two instants.

The internal representation introduces the following limits:

	0 <= microseconds < 1000000

	0 <= seconds < 3600*24 (the number of seconds in one day)

	-999999999 <= days <= 999999999

When fraction of microseconds are specified:

If any argument is a float and there are fractional microseconds, the
fractional microseconds left over from all arguments are combined and their
sum is rounded to the nearest microsecond using round-half-to-even
tiebreaker. If no argument is a float, the conversion and normalization
processes are exact (no information is lost).

Such internal timedelta structures can pose problems when you are de/serializing
from JSONables coming from the code generated in other languages. You face
a mismatch in granularity and range (see
Durations in C++ and
Durations in Go).

Mapry generates C++ and Go code which uses nanoseconds to specify durations.
The durations of nanosecond granularity can not be captured in
Python 3 since Python 3 stores only microseconds and not nanoseconds. This can
cause silent hard-to-trace truncation since Python 3 stores microseconds.

Second, datetime.timedelta spans a practically inexhaustible time frame
which can not be fit into 64-bit integers use to represent nanoseconds in C++
and Go and can lead to overflows. For example, you can represent PY300
without problems as duration in Mapry-generated Python 3 code, but it will
overflow in C++ and Go code.

If you need to handle fine-grained and/or long durations in different languages,
you better pick either a custom string or integer representation that aligns
better with your particular use case.

Installation

We provide a prepackaged PEX file that can be readily downloaded and executed.
Please see the Releases section [https://github.com/Parquery/mapry/releases].

If you prefer to use Mapry as a library (e.g., as part of your Python-based
build system), install it with pip:

pip3 install mapry

Command-Line Usage

Mapry provides a single point-of-entry for all the code generation through
mapry-to command.

To generate the code in different languages, invoke:

For C++:

mapry-to cpp \
 --schema /path/to/schema.json \
 --outdir /path/to/cpp/code

For Go:

mapry-to go \
 --schema /path/to/schema.json \
 --outdir /path/to/go/code

For Python:

mapry-to py \
 --schema /path/to/schema.json \
 --outdir /path/to/py/code

If the output directory does not exist, it will be created. Any existing
files will be silently overwritten.

mapry Module

Contents:

	mapry

	mapry.parse

	mapry.cpp.generate
	mapry.cpp.generate.types_header

	mapry.cpp.generate.parse_header

	mapry.cpp.generate.parse_impl

	mapry.cpp.generate.jsoncpp_header

	mapry.cpp.generate.jsoncpp_impl

	mapry.py.generate
	mapry.py.generate.types

	mapry.py.generate.parse

	mapry.py.generate.fromjsonable

	mapry.py.generate.tojsonable

	mapry.go.generate
	mapry.go.generate.types

	mapry.go.generate.parse

	mapry.go.generate.fromjsonable

	mapry.go.generate.fromjsonable_test

	mapry.go.generate.tojsonable

	mapry.go.generate.tojsonable_test

mapry

Serialize and deserialize object graphs from/to JSONables.

	
class mapry.Array(values, minimum_size=None, maximum_size=None)

	Represent a type of arrays.

	
class mapry.Boolean

	Represent booleans.

	
class mapry.Class(name, plural, description, ref, id_pattern=None)

	Represent a mapry class.

	
class mapry.Cpp

	List settings for the generation of the C++ code.

	
class mapry.Date(fmt=None)

	Represent a type of dates.

	
class mapry.Datetime(fmt=None)

	Represent a type of time points.

	
class mapry.Duration

	Represent a type of durations (ISO 8601 formatted).

	
class mapry.Embed(name, description, ref)

	Represent an embeddable structure.

	
class mapry.Float(minimum=None, exclusive_minimum=False, maximum=None, exclusive_maximum=False)

	Represent a type of floating-point numbers.

	
class mapry.Go

	List settings for the generation of the Go code.

	
class mapry.Graph

	Represent an object graph.

	
class mapry.Integer(minimum=None, exclusive_minimum=False, maximum=None, exclusive_maximum=False)

	Represent a type of integer numbers.

	
class mapry.Map(values)

	Represent a type of mappings string -> mapry value.

	
class mapry.Path(pattern=None)

	Represent a type of paths in the file system.

	
class mapry.Property(ref, name, a_type, description, json, optional, composite)

	Represent a property of a composite structure.

	
class mapry.Py

	List settings for the generation of the Python code.

	
class mapry.Schema(graph, cpp, go, py)

	Represent a schema of an object graph.

	
class mapry.String(pattern=None)

	Represent a type of strings.

	
class mapry.Time(fmt=None)

	Represent a type of times of the day.

	
class mapry.TimeZone

	Represent a type of time zones (according to the IANA identifier).

	
class mapry.Type

	Represent a type of mapry values.

	
mapry.iterate_over_types(graph)

	Iterate over all the value types defined in a graph.

This includes the value types of arrays and maps as well as
types of properties of classes and embeddable structures.

	Parameters

	graph (Graph) – mapry definition of the object graph

	Return type

	Iterable[Tuple[Type, str]]

	Returns

	iteration over the mapry type definitions and their reference paths

	
mapry.needs_type(a_type, query)

	Search query recursively starting with a_type.

The search first checks if a_type is equal query. Otherwise,
the search continues through value types, if it is an aggregated type (such
as array or map) or through types of its properties, if it is a composite
type (such as graph, embeddable structure or class).

	Parameters

	
	a_type (Type) – type to inspect

	query (Type[Type]) – type to search for

	Return type

	bool

	Returns

	True if query found recursively in a_type

	
mapry.references(a_type)

	Inspect recursively which classes are referenced by a_type.

	Parameters

	a_type (Union[Class, Embed]) – class or embeddable structure to inspect

	Return type

	List[Class]

	Returns

	list of referenced classes

mapry.parse

Parse a mapry schema.

	
mapry.parse.schema_from_json_file(path)

	Parse and validate the given JSON-encoded schema from a file.

	Parameters

	path (Path) – to the JSON-encoded mapry schema.

	Return type

	Schema

	Returns

	parsed schema

	
mapry.parse.schema_from_mapping(mapping, ref)

	Parse mapry schema from the given mapping.

	Parameters

	
	mapping (Mapping[str, Any]) – to be parsed

	ref (str) – reference path to the schema

	Return type

	Schema

	Returns

	parsed schema

mapry.cpp.generate

Generate the C++ code to parse and serialize a mapry object graph.

mapry.cpp.generate.types_header

Generate the code that defines the types of the object graph.

	
mapry.cpp.generate.types_header.generate(graph, cpp)

	Generate the header file that defines the types of the object graph.

	Parameters

	
	graph (Graph) – definition of the object graph

	cpp (Cpp) – C++ settings

	Return type

	str

	Returns

	content of the header file

	Ensures

	
	result.endswith('\n')

mapry.cpp.generate.parse_header

Generate the header of the general parsing structures.

	
mapry.cpp.generate.parse_header.generate(cpp)

	Generate the header file defining the parsing structures.

	Parameters

	cpp (Cpp) – C++ settings

	Return type

	str

	Returns

	content of the header file

	Ensures

	
	result.endswith('\n')

mapry.cpp.generate.parse_impl

Generate the code implementing the general parse structures.

	
mapry.cpp.generate.parse_impl.generate(cpp, parse_header_path)

	Generate the implementation file of the parsing structures.

	Parameters

	
	cpp (Cpp) – C++ settings

	parse_header_path (str) – path to the header file that defines the general parsing structures

	Return type

	str

	Returns

	content of the implementation file

	Ensures

	
	result.endswith('\n')

mapry.cpp.generate.jsoncpp_header

Generate the header for de/serialization from/to Jsoncpp values.

	
mapry.cpp.generate.jsoncpp_header.generate(graph, cpp, types_header_path, parse_header_path)

	Generate the header file for de/serialization from/to Jsoncpp.

	Parameters

	
	graph (Graph) – definition of the object graph

	cpp (Cpp) – C++ settings

	types_header_path (str) – path to the header file that defines the types of the object graph

	parse_header_path (str) – path to the header file that defines the general parsing structures

	Return type

	str

	Returns

	content of the header file

	Ensures

	
	result.endswith('\n')

mapry.cpp.generate.jsoncpp_impl

Generate the implementation of de/serialization from/to Jsoncpp values.

	
mapry.cpp.generate.jsoncpp_impl.generate(graph, cpp, types_header_path, parse_header_path, jsoncpp_header_path)

	Generate the implementation file for de/serialization from/to Jsoncpp.

	Parameters

	
	graph (Graph) – definition of the object graph

	cpp (Cpp) – C++ settings

	types_header_path (str) – defines the types of the object graph

	parse_header_path (str) – defines the general parsing structures

	jsoncpp_header_path (str) – defines parsing and serializing functions from/to Jsoncpp

	Return type

	str

	Returns

	content of the implementation file

	Ensures

	
	result.endswith('\n')

mapry.py.generate

Generate the Python code to parse and serialize a mapry object graph.

mapry.py.generate.types

mapry.py.generate.parse

Generate the code that defines general structures required for parsing.

	
mapry.py.generate.parse.generate(graph, py)

	Generate the source file to define general structures required for parsing.

	Parameters

	
	graph (Graph) – mapry definition of the object graph

	py (Py) – Python settings

	Return type

	str

	Returns

	content of the source file

	Ensures

	
	result.endswith('\n')

mapry.py.generate.fromjsonable

mapry.py.generate.tojsonable

Generate the code that serializes the object graph to a JSONable.

	
mapry.py.generate.tojsonable.generate(graph, py)

	Generate the source file to parse an object graph from a JSONable object.

	Parameters

	
	graph (Graph) – mapry definition of the object graph

	py (Py) – Python settings

	Return type

	str

	Returns

	content of the source file

	Ensures

	
	result.endswith('\n')

mapry.go.generate

Generate the Go code to parse and serialize a mapry object graph.

mapry.go.generate.types

Generate the code that defines the types of the object graph.

	
mapry.go.generate.types.generate(graph, go)

	Generate the source file that defines the types of the object graph.

	Parameters

	
	graph (Graph) – definition of the object graph

	go (Go) – Go settings

	Return type

	str

	Returns

	content of the source file

	Ensures

	
	result.endswith('\n')

mapry.go.generate.parse

Generate the code that defines general structures required for parsing.

	
mapry.go.generate.parse.generate(go)

	Generate the souce file to define general structures required for parsing.

	Return type

	str

	Returns

	content of the source file

	Ensures

	
	result.endswith('\n')

mapry.go.generate.fromjsonable

Generate the code that parses the object graph from a JSONable structure.

	
mapry.go.generate.fromjsonable.generate(graph, go)

	Generate the source file to parse an object graph from a JSONable object.

	Parameters

	
	graph (Graph) – mapry definition of the object graph

	go (Go) – Go settings

	Return type

	str

	Returns

	content of the source file

	Ensures

	
	result.endswith('\n')

mapry.go.generate.fromjsonable_test

Generate the code to test parsing of object graphs from JSONables.

	
mapry.go.generate.fromjsonable_test.generate(graph, go)

	Generate the source file to test parsing from a JSONable object.

	Parameters

	
	graph (Graph) – mapry definition of the object graph

	go (Go) – Go settings

	Return type

	str

	Returns

	content of the source file

	Ensures

	
	result.endswith('\n')

mapry.go.generate.tojsonable

Generate the code that serializes the object graph to a JSONable.

	
mapry.go.generate.tojsonable.generate(graph, go)

	Generate the source file to serialize an object graph to a JSONable object.

	Parameters

	
	graph (Graph) – mapry definition of the object graph

	go (Go) – Go settings

	Return type

	str

	Returns

	content of the source file

	Ensures

	
	result.endswith('\n')

mapry.go.generate.tojsonable_test

Generate the code to test serializing object graphs to JSONables.

	
mapry.go.generate.tojsonable_test.generate(graph, go)

	Generate the source file to test serializing to a JSONable.

	Parameters

	
	graph (Graph) – mapry definition of the object graph

	go (Go) – Go settings

	Return type

	str

	Returns

	content of the source file

	Ensures

	
	result.endswith('\n')

Related Projects

We give here a non-comprehensive list of related de/serialization projects. We
indicate how they differ from Mapry and explain why we took pains to develop
(and maintain!) our own tool instead of using an existing one.

	Standard JSON libraries all support object trees, but not object graphs.
Moreover, they do not support data based on a schema. While this is handy
when the structure of your data is unknown at runtime, it makes code
unnecessarily more difficult to maintain when the structure is indeed
known in advance.

	There is a large ecosystem around structured objects and their serialization
based on property annotations (e.g.,
Rapidschema (C++) [https://github.com/ledergec/rapidschema],
encoding/json (Go) [https://golang.org/pkg/encoding/json/] or
Jackson (Java) [https://github.com/FasterXML/jackson]). While some of them
support handling object graphs (usually through custom logic), we found the
lack of polyglot support (and resulting maintenance effort required by
synchronization of custom de/serialization rules across languages)
a high barrier-to-usage.

	Standard or widely used serialization libraries such as
Boost.Serialization (C++) [https://www.boost.org/doc/libs/1_70_0/libs/serialization/doc/index.html],
Gob (Go) [https://golang.org/pkg/encoding/gob/] or
Pickle (Python) [https://docs.python.org/3/library/pickle.html]
serialize object graphs out-of-the-box and handle impedance mismatch well.
However, the representation of the serialized data is barely human-readable
and difficult to get right in a polyglot setting due to a lack of common
poly-language libraries (e.g., reading pickled data structures in C++).
We deemed it a Herculean task to maintain the corresponding de/serializations
accross different languages.

	Popular serializers such as
Protocol Buffers [https://developers.google.com/protocol-buffers/] or
Cap’n Proto [https://capnproto.org/]
support only object trees. If you need to work with cross-references in the
serialized message, you need to dereference instances yourself. We found
manual dereferencing in code to be error prone and lead to a substantial
code bloat.

	Flatbuffers [https://google.github.io/flatbuffers/] handle object graphs
natively, but exhibit a great deal of impedance mismatch through lack
of maps and sophisticated data types such as date/time, duration etc.

	Language-specific serializers such as
ThorSerializer (C++) [https://github.com/Loki-Astari/ThorsSerializer],
JavaScript Object Graph (Javascript) [https://github.com/jsog/jsog],
Serializr (Javascript) [https://github.com/mobxjs/serializr] and
Flexjson (Java) [http://flexjson.sourceforge.net/]
serialize object graphs with satisfying, but varying degree of structure
enforcement and readability. Most approaches require the developer to
annotate the structures with decorators which the libraries use to parse
and serialize data. As long as you use a single-language setting and
care about the data being readable, these solutions work well. However,
it is not clear how they can be adapted to a multi-language setting where
system components written in different languages need to inter-operate.

	JSON for Linking Data [https://json-ld.org/] and
JSON Graph are
conventions to provide a systematic approach to modeling the object graphs in
JSON. While these conventions look promising, we found the existing
libraries lacking for production-ready code. On a marginal note,
the JSON representations seem unnecessarily verbose when representing
references.

	JVM serializers [https://github.com/eishay/jvm-serializers/wiki] presents
a report on different object serializers running on top of Java Virtual
Machine. The serializers are evaluated based on their run time and size.

Future Work

While Mapry satisfies very well many of our practical needs, there are
countless possible improvement vectors. If you feel strong about any of
the listed improvements (or you have another one in mind), please
create an issue [https://github.com/Parquery/mapry/issues/new] and
help us discuss it.

New primitive types. We tried to devise a practical set of primitive types
that covers most use cases. However, we do not know our (existing or potential)
user base and our assumptions on what is necessary might be wrong.

New aggergated types. So far, we introduced only arrays and maps as
aggregated types since they are JSON-native.

While JSON does not support aggregated types such as sets, the sets are at the
core of many data models and would definitely merit a representation in Mapry.
Please let us know your opinion about what would be a conventional way of
representing sets in JSON.

Elaborate composite type system. We limited the composite type system to a
graph, classes and embeddable structures for simplicity following Go’s approach
(lack of inheritance, tuples and unions by design). We find that optional
properties cover most of the use cases which are also covered by inheritance,
tuples or unions. Hence, we thought that having optional properties is enough
and did not want to complicate further the type system.

Please feel free to convince us of the contrary and tell us how inheritance,
tuples or unions should be handled. In particular, we do not really know what
would be a conventional way of dealing with such a type system in Go.

Moreover, it is not clear to us how to deal with variance in aggregated types
(covariance, contravariance or invariance) since different languages follow
different approaches. For example, C++ std::list and Python’s List are
invariant (e.g., std::list<Employee> can not pass as
std::list<Person>), while Python Sequence is covariant (at least in
mypy generics [https://mypy.readthedocs.io/en/latest/generics.html#variance-of-generic-types]).
Admittedly, we are a bit lost how to approach this issue
and are open to suggestions.

Better data constraints. We are convinced that constraints (such as min/max
ranges) make data structures more maintainable and prevent many of the errors
early. However, Mapry’s current constraints are quite limited and probably need
extensions. Please let us know which constraints you would need and how you
would like to specify them.

Unfortunately, we can support only the most basic constraints. We do not have
the time resources to include a declarative or imperative constraint language
that would automatically compile into the generated code. Notwithstanding the
lack of time, we strongly believe that such a language would be beneficial and
are open for cooperation if you think you could help us tackle that challenge.

Efficiency of de/serialization. Mapry was optimized for readability of
generated code rather than the efficiency of de/serialization. Multiple
improvements are possible here.

Obviously, the generated de/serialization code could be optimized
while still maintaining the readability. Please let us know which practical
bottlenecks you experienced so that we know where/how to focus our optimization
efforts.

Since Mapry does not depend on the source of the JSONable data, you can already
use faster JSON-parsing libraries (e.g.,
fastjson (Go) [https://github.com/valyala/fastjson] or
orjson (Python) [https://pypi.org/project/orjson/]). However, in C++ setting
where no standard JSONable structure exists, we could introduce
an additional code generator based on faster JSON-parsing libraries such as
rapidjson [http://rapidjson.org/].

Fast de/serialization of character streams. Instead of operating
on JSONable structures which are wasteful of memory and computational resources,
we could generate de/serialization code that operates on streams of characters.
Since schema is known, we could exploit that knowledge to make code
work in one pass, be frugal in memory (e.g., consume only as much memory as is
necessary to hold the object graph) and be extremely fast (since the data types
are known in advance).

Additionally, when the language is slow (e.g., Python), the code can be made
even faster by generating it in the most efficient language (e.g., C) together
with a wrapper in the original language.

For an example of such an approach based on schema knowledge, see
easyjson (Go) [https://github.com/mailru/easyjson].

Improve readability of generated code. While we find the generated code
readable, the readability lies in the eye of the beholder. Please let us know
which spots were hard for you to parse and how we could improve them.

Runtime checks at serialization. We designed Mapry to perform runtime
validation checks only at deserialization since we envisioned its main input
to be generated by humans. However, if you construct an object graph
programmatically, you need to serialize it and then deserialize it in order to
validate the contracts. While this works in cases with small data, it would be
computationally wasteful on large object graphs.

We are thinking about introducing validation at serialization as well (triggered
by a dedicated flag argument). Please let us know if you miss this functionality
and what would you like to have covered.

Contributing

We are very grateful for and welcome contributions: be it opening of the issues,
discussing future features or submitting pull requests.

To submit a pull request:

	Check out the repository.

	In the repository root, create the virtual environment:

python3 -m venv venv3

	Activate the virtual environment:

source venv3/bin/activate

	Install the development dependencies:

pip3 install -e .[dev]

	Implement your changes.

	Run precommit.py to execute pre-commit checks locally.

Live tests

We also provide live tests that generate, compile and run the de/serialization
code on a series of tests cases. These live tests depend on build tools of
the respective languages (e.g., gcc and CMake for C++ and go compiler for Go,
respectively).

You need to install manually the build tools. Afterwards, create a separate
virtual environment for the respective language and install Python dependencies
for the respective language (e.g., Conan in case of C++) given as test*
requirements in
setup.py [https://github.com/Parquery/mapry/blob/master/setup.py].

The workflow for C++ looks as follows:

Create a separate virtual environment
python3 -m venv venv-cpp

Activate it
. venv-cpp/bin/activate

Install the dependencies of C++ live tests
pip3 install -e .[testcpp]

Run the live tests
./tests/cpp/live_test_generate_jsoncpp.py

For Go:

python3 -m venv venv-go
. venv-go/bin/activate
pip3 install -e .[testgo]
./tests/go/live_test_generate_jsonable.py

For Python:

python3 -m venv venv-py
. venv-py/bin/activate
pip3 install -e .[testpy]./p
./tests/py/live_test_generate_jsonable.py

Versioning

We follow Semantic Versioning [http://semver.org/spec/v1.0.0.html].
We extended the standard semantic versioning with an additional format version.
The version W.X.Y.Z indicates:

	W is the format version (data representation is backward-incompatible),

	X is the major version (library interface is backward-incompatible),

	Y is the minor version (library interface is extended, but
backward-compatible), and

	Z is the patch version (backward-compatible bug fix).

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mapry	

 	
 	
 mapry.cpp.generate	

 	
 	
 mapry.cpp.generate.jsoncpp_header	

 	
 	
 mapry.cpp.generate.jsoncpp_impl	

 	
 	
 mapry.cpp.generate.parse_header	

 	
 	
 mapry.cpp.generate.parse_impl	

 	
 	
 mapry.cpp.generate.types_header	

 	
 	
 mapry.go.generate	

 	
 	
 mapry.go.generate.fromjsonable	

 	
 	
 mapry.go.generate.fromjsonable_test	

 	
 	
 mapry.go.generate.parse	

 	
 	
 mapry.go.generate.tojsonable	

 	
 	
 mapry.go.generate.tojsonable_test	

 	
 	
 mapry.go.generate.types	

 	
 	
 mapry.parse	

 	
 	
 mapry.py.generate	

 	
 	
 mapry.py.generate.parse	

 	
 	
 mapry.py.generate.tojsonable	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | P
 | R
 | S
 | T

A

 	
 	Array (class in mapry)

B

 	
 	Boolean (class in mapry)

C

 	
 	Class (class in mapry)

 	
 	Cpp (class in mapry)

D

 	
 	Date (class in mapry)

 	
 	Datetime (class in mapry)

 	Duration (class in mapry)

E

 	
 	Embed (class in mapry)

F

 	
 	Float (class in mapry)

G

 	
 	generate() (in module mapry.cpp.generate.jsoncpp_header)

 	(in module mapry.cpp.generate.jsoncpp_impl)

 	(in module mapry.cpp.generate.parse_header)

 	(in module mapry.cpp.generate.parse_impl)

 	(in module mapry.cpp.generate.types_header)

 	(in module mapry.go.generate.fromjsonable)

 	(in module mapry.go.generate.fromjsonable_test)

 	(in module mapry.go.generate.parse)

 	(in module mapry.go.generate.tojsonable)

 	(in module mapry.go.generate.tojsonable_test)

 	(in module mapry.go.generate.types)

 	(in module mapry.py.generate.parse)

 	(in module mapry.py.generate.tojsonable)

 	
 	Go (class in mapry)

 	Graph (class in mapry)

I

 	
 	Integer (class in mapry)

 	
 	iterate_over_types() (in module mapry)

M

 	
 	Map (class in mapry)

 	
 mapry

 	module

 	
 mapry.cpp.generate

 	module

 	
 mapry.cpp.generate.jsoncpp_header

 	module

 	
 mapry.cpp.generate.jsoncpp_impl

 	module

 	
 mapry.cpp.generate.parse_header

 	module

 	
 mapry.cpp.generate.parse_impl

 	module

 	
 mapry.cpp.generate.types_header

 	module

 	
 mapry.go.generate

 	module

 	
 mapry.go.generate.fromjsonable

 	module

 	
 mapry.go.generate.fromjsonable_test

 	module

 	
 mapry.go.generate.parse

 	module

 	
 mapry.go.generate.tojsonable

 	module

 	
 mapry.go.generate.tojsonable_test

 	module

 	
 mapry.go.generate.types

 	module

 	
 	
 mapry.parse

 	module

 	
 mapry.py.generate

 	module

 	
 mapry.py.generate.parse

 	module

 	
 mapry.py.generate.tojsonable

 	module

 	
 module

 	mapry

 	mapry.cpp.generate

 	mapry.cpp.generate.jsoncpp_header

 	mapry.cpp.generate.jsoncpp_impl

 	mapry.cpp.generate.parse_header

 	mapry.cpp.generate.parse_impl

 	mapry.cpp.generate.types_header

 	mapry.go.generate

 	mapry.go.generate.fromjsonable

 	mapry.go.generate.fromjsonable_test

 	mapry.go.generate.parse

 	mapry.go.generate.tojsonable

 	mapry.go.generate.tojsonable_test

 	mapry.go.generate.types

 	mapry.parse

 	mapry.py.generate

 	mapry.py.generate.parse

 	mapry.py.generate.tojsonable

N

 	
 	needs_type() (in module mapry)

P

 	
 	Path (class in mapry)

 	
 	Property (class in mapry)

 	Py (class in mapry)

R

 	
 	references() (in module mapry)

S

 	
 	Schema (class in mapry)

 	schema_from_json_file() (in module mapry.parse)

 	
 	schema_from_mapping() (in module mapry.parse)

 	String (class in mapry)

T

 	
 	Time (class in mapry)

 	
 	TimeZone (class in mapry)

 	Type (class in mapry)

 _images/diagram.png
properties’ {
Some_property”{
type Integer

Mapry

Generated code

JSONable

{
i Go | feymon| e

Object graph

yet_another_instance

another_instance

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Mapry’s documentation!

 		
 Introduction

 		
 Supported languages

 		
 Workflow

 		
 Design Decisions

 		
 Schema

 		
 Introductory Example

 		
 Language-specific Settings

 		
 Data Types

 		
 Primitive Types

 		
 Aggregated Types

 		
 Composite Types

 		
 JSON Representation

 		
 Date/time Format

 		
 Conventions

 		
 Further Examples

 		
 C++ Specifics

 		
 Settings

 		
 Generated Code

 		
 Deserialization

 		
 Serialization

 		
 Compilation

 		
 Implementation Details

 		
 Representation

 		
 Numbers

 		
 Time Libraries

 		
 Durations

 		
 Go Specifics

 		
 Settings

 		
 Generated Code

 		
 Deserialization

 		
 Serialization

 		
 Implementation Details

 		
 Representation

 		
 Numbers

 		
 Date/time Format Directives

 		
 Durations

 		
 Python Specifics

 		
 Settings

 		
 Generated Code

 		
 Deserialization

 		
 Serialization

 		
 Implementation Details

 		
 Representation

 		
 Unordered and Ordered Mappings

 		
 Numbers

 		
 Durations

 		
 Installation

 		
 Command-Line Usage

 		
 mapry Module

 		
 mapry

 		
 mapry.parse

 		
 mapry.cpp.generate

 		
 mapry.cpp.generate.types_header

 		
 mapry.cpp.generate.parse_header

 		
 mapry.cpp.generate.parse_impl

 		
 mapry.cpp.generate.jsoncpp_header

 		
 mapry.cpp.generate.jsoncpp_impl

 		
 mapry.py.generate

 		
 mapry.py.generate.types

 		
 mapry.py.generate.parse

 		
 mapry.py.generate.fromjsonable

 		
 mapry.py.generate.tojsonable

 		
 mapry.go.generate

 		
 mapry.go.generate.types

 		
 mapry.go.generate.parse

 		
 mapry.go.generate.fromjsonable

 		
 mapry.go.generate.fromjsonable_test

 		
 mapry.go.generate.tojsonable

 		
 mapry.go.generate.tojsonable_test

 		
 Related Projects

 		
 Future Work

 		
 Contributing

 		
 Live tests

 		
 Versioning

